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Abstract Many random populations can be modeled as a countable set of points scattered
randomly on the positive half-line. The points may represent magnitudes of earthquakes and
tornados, masses of stars, market values of public companies, etc. In this article we explore a
specific class of random such populations we coin ‘Paretian Poisson processes’. This class
is elemental in statistical physics—connecting together, in a deep and fundamental way,
diverse issues including: the Poisson distribution of the Law of Small Numbers; Paretian tail
statistics; the Fréchet distribution of Extreme Value Theory; the one-sided Lévy distribution
of the Central Limit Theorem; scale-invariance, renormalization and fractality; resilience to
random perturbations.
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1 Introduction

Pareto’s law—a statistical law describing a power-law connection between positive-valued
measurements and their occurrence frequencies—is abundant across the Sciences. First dis-
covered by the Italian economist Vilfredo Pareto at the close of the nineteenth century [1],
Pareto’s law turned out to be ubiquitous. It is observed in empirical data spanning from hu-
man income to earthquake magnitudes and to moon-crater diameters, and various Paretian
‘generating mechanisms’ were proposed. Excellent reviews of Pareto’s law are Chap. 14
in [2], and [3, 4]. Pareto’s law, however, is merely the ‘tip of the iceberg’—the iceberg itself
being the class of Paretian Poisson processes, which is the subject of this article.
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Poisson processes constitute the statistical model for the random scattering of points in
general domains [5], and have a wide spectrum of applications ranging from Shot Noise [6]
to Queueing Systems [7] and to Insurance and Finance [8]. Often, the random scattering of
points takes place on the positive half-line: magnitudes (earthquakes, tornados, solar flares);
sizes (human income, moon-crater diameters, insurance claims); enumerations (web hits,
article citations, city populations). Hereafter, we refer to a Poisson process as Paretian if it
is defined on the positive half-line and is governed by a decreasing power-law rate function
(the precise mathematical definition is given in Sect. 4 below).

Paretian Poisson processes are of great importance and centrality in Statistical Physics.
Yet, despite their focal role, Paretian Poisson processes are grossly underexposed to the wide
physical audience. The aim of this article is to introduce the readers to this important class
of processes, and to present a panoramic overview of their key properties:

• Paretian Poisson processes emerge from a ‘meta’, infinite-dimensional, stochastic limit-
law asserting that they are the only possible stochastic scaling limits of random popula-
tions of independent and identically distributed positive-valued random variables.

• The following, well-known, stochastic limit-laws are one-dimensional projections of the
aforementioned ‘meta’ stochastic limit-law: the Poisson distribution of the Law of Small
Numbers; Paretian tail statistics; the Fréchet distribution of Extreme Value Theory; the
one-sided Lévy distribution of the Central Limit Theorem.

• Paretian Poisson processes constitute the class of fractal Poisson processes defined on the
positive half-line—fractality being defined either via the notion of scale-invariance or via
the notion of renormalization.

• Paretian Poisson processes constitute the class of Poisson processes defined on the posi-
tive half-line which are resilient to the action of arbitrary random multiplicative pertur-
bations.

In addition, in this article we provide:

• Simple and efficient algorithms for both the computer simulation and the statistical infer-
ence of Paretian Poisson processes.

The reminder of the article is organized as follows. We begin, in Sect. 2, with a simple and
generic random population model which gives rise to four stochastic limit-laws: Poisson,
Pareto, Fréchet and one-sided Lévy probability distributions. Section 3 reviews the notion
of Poisson processes, and the distribution of their exceedances, maxima, and aggregates.
Section 4 presents the ‘meta’ stochastic limit-law and its connection to the four stochastic
limit-laws of Sect. 2. Section 5 employs an order-statistics approach to address the computer
simulation and the statistical inference of Paretian Poisson processes. Section 6 explores
the fractal nature Paretian Poisson processes via scale-invariance and renormalization. We
conclude, in Sect. 7, with the resilience of Paretian Poisson processes to the action of random
multiplicative perturbations.

2 Stochastic Limit-Laws

Let {ξ1, ξ2, . . .} be an arbitrary sequence of Independent and Identically Distributed (IID)
positive-valued random variables, governed by the common survival probability function
P>(x) = Prob(ξ1 > x) (x ≥ 0).

Given the IID sequence consider the random population

P(ε;n) = {εξ1, εξ2, . . . , εξn} , (1)
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where ε is a small scale parameter (ε � 1) and where n is a large size parameter (n � 1).
The random population P(ε;n) represents a ‘macroscopic picture’ of a large set of random
events quantified by a positive valued measure.

Probabilistic limit theorems seek stochastic limit-laws attained by the random popula-
tion P(ε;n) as ε → 0 and n → ∞. The two most celebrated and well-known examples
are: (i) Extreme Value Theory which studies the asymptotic behavior of the population-
maximum [9–11]; (ii) the Central Limit Theorem which studies the asymptotic behavior of
the population-aggregate [12–14].

In order to ensure the existence of stochastic limit-laws two key questions need be ad-
dressed: (i) what condition should the survival probability function P>(·) satisfy? and, (ii)
how should the parameters ε and n scale jointly as ε → 0 and n → ∞?

The answer to the first question involves the notion of regular variation [15]. Reg-
ularly varying functions are generalizations of asymptotic power-laws. A real function
f (·) is said to be regularly varying at infinity if the limit limx→∞ f (yx)/f (x) exists for
all positive constants y. Theory shows that if the function f (·) is regularly varying then
limx→∞ f (yx)/f (x) = yν , where the exponent ν is a real parameter called the “exponent of
regular variation”.

The following pair of conditions—the first regarding the survival probability function
P>(·), the second regarding the parameters ε and n—are necessary and sufficient in order to
ensure the existence of stochastic limit-laws:

Condition 1 The survival probability function P>(·) is regularly varying at infinity:

lim
x→∞

P>(yx)

P>(x)
= y−α (y > 0), (2)

where α is an arbitrary positive exponent.

Condition 2 The population size n is of the order of 1/P>(1/ε):

lim
ε→0
n→∞

nP>(1/ε) = c, (3)

where c is an arbitrary positive constant.

We now turn to describe four different stochastic limit-laws attainable from the random
population P(ε;n): Poisson, Pareto, Fréchet and one-sided Lévy. These stochastic limit-
laws are classic results in Probability Theory—the first three fall under the category of Ex-
treme Value Theory, and the fourth falls under the category of the Central Limit Theorem.

Below let the set Pl (ε;n) = P(ε;n)∩ (l,∞) denote the sub-population consisting of the
population points residing above the positive level l. And, henceforth, let the shorthand lim
denote the double limit ε → 0 and n → ∞.

2.1 Poisson

Consider the number of points NP(ε;n)(l) of the population P(ε;n) which exceed the posi-
tive threshold level l. The random variable NP(ε;n)(l) equals the size of the sub-population
Pl (ε;n). The stochastic limit N(l) = limNP(ε;n)(l) exists if and only if Conditions 1 and 2
are met—in which case it is Poisson distributed with mean

〈N(l)〉 = cl−α. (4)
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The convergence of ‘rare events’—in our case the exceedances of a given threshold—to a
limiting Poisson distribution is often referred to as the “Law of Small Numbers” ([16], Sects.
VI.5 and VI.6).

2.2 Pareto

Consider the size SP(ε;n)(l) of a population-point exceeding the positive threshold level l.
The random variable SP(ε;n)(l) represents a generic member of the sub-population Pl (ε;n).
The stochastic limit S(l) = limSP(ε;n)(l) exists if and only if Condition 1 is met—in which
case it is Pareto distributed with survival probability function

Prob (S(l) > x) = (x/ l)−α (x ≥ l). (5)

This stochastic limit-law is one simple and general explanation to the widespread appearance
of Paretian tail statistics in empirical data [4].

2.3 Fréchet

Consider the maximum MP(ε;n) of the population P(ε;n). The random variable MP(ε;n)

equals the size of the population’s maximal point. The stochastic limit M = limMP(ε;n)

exists if and only if Conditions 1 and 2 are met—in which case it is Fréchet distributed with
cumulative distribution function

Prob (M ≤ x) = exp
{−cx−α

}
(x ≥ 0). (6)

Extreme Value Theory asserts that the Fréchet distribution is the only possible stochas-
tic scaling limit—supported on the positive half-line—of maxima of IID random variables
[9–11].

2.4 Lévy

Consider the aggregate AP(ε;n) of the population P(ε;n). The random variable AP(ε;n)

equals the sum of the population points. The stochastic limit A = limAP(ε;n) exists if and
only if Conditions 1 and 2 are met—provided that the exponent α is in the range 0 < α < 1—
in which case it is one-sided Lévy distributed with Laplace transform

〈exp {−θA}〉 = exp {−�(1 − α)cθα} (θ ≥ 0). (7)

The Central Limit Theorem asserts that the one-sided Lévy distribution is the only possible
stochastic scaling limit—supported on the positive half-line—of aggregates of IID random
variables [12–14].

3 Poisson Processes

A Poisson process � with rate function r(t) (t > 0) is a countable collection of points
scattered randomly on the positive half-line, characterized by the following pair of properties
[5]: (i) the number of points residing within the interval I is a Poisson-distributed random
variable with mean

∫
I

r(t)dt ; and, (ii) the number of points residing within disjoint intervals
are independent random variables.
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Let us now turn to examine the exceedances, maxima, and aggregates—discussed in the
previous section in the context of the random population P(ε;n)—in the context of Poisson
processes.

Below, we consider an arbitrary Poisson process � with rate function r(t) (t > 0) which
is integrable at infinity, and let �l = � ∩ (l,∞) denote the subset of points residing above
the positive level l.

3.1 Exceedances

Consider the number of points N�(l) exceeding the positive threshold level l. The random
variable N�(l) equals the size of the subset �l , and is thus Poisson distributed with mean

〈N�(l)〉 =
∫ ∞

l

r(t)dt. (8)

The ‘existence theorem’ of the Theory of Poisson processes ([5], Sect. 2.5) further implies
that: (i) the subset �l forms an IID sequence of random variables (which are independent of
the subset’s size); and, (ii) the size S�(l) of a generic member of the subset �l is governed
by the survival probability function

Prob (S�(l) > x) =
∫ ∞

x
r(t)dt

∫ ∞
l

r(t)dt
(x ≥ l). (9)

3.2 Maximum

Consider the maximum M� of the Poisson process �—i.e., the maximal point of the ran-
dom set �. The maximum M� is no larger than the level x if and only if the random variable
N�(x) equals zero: {M� ≤ x} ⇔ {N�(x) = 0}. Since the random variable N�(x) is Pois-
son distributed with mean

∫ ∞
x

r(t)dt , we obtain that the maximum M� is governed by the
cumulative distribution function

Prob (M� ≤ x) = exp

{
−

∫ ∞

x

r(t)dt

}
(x ≥ 0). (10)

3.3 Aggregate

Consider the aggregate A� of the Poisson process �—i.e., the sum of points of the random
set �. Campbell’s theorem of the theory of Poisson processes ([5], Sect. 3.2) asserts that:
(i) the aggregate A� is summable if and only if the integral

∫ ∞
0 min{t,1}r(t)dt is conver-

gent; and, (ii) if summable then the Laplace transform of the aggregate is given by

〈exp {−θA�}〉 = exp

{
−

∫ ∞

0
(1 − exp {−θt}) r(t)dt

}
(θ ≥ 0) (11)

4 Paretian Poisson Processes

Comparing, respectively, equations (4)–(7) of Sect. 2 to (8)–(11) of Sect. 3, we arrive at the
following conclusion:
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Conclusion 3 The limiting random variables N(l), S(l),M,A of Sect. 2 are equal—
respectively and in law—to the random variables N�(l), S�(l),M�,A� of Sect. 3 if and
only if the rate function of the Poisson process � is given by

r(t) = cαt−(1+α) (t > 0). (12)

Henceforth, we refer to a Poisson process defined on the positive half-line as Paretian
if its rate function admits the power-law form of (12)—the parameter α being its Paretian
exponent, and the parameter c being its Paretian amplitude.

Conclusion 3 asserts that Paretian Poissonian processes underlie all four stochastic limit-
laws discussed in Sect. 2: Poisson, Pareto, Fréchet and one-sided Lévy. In fact, the stochastic
limit-laws of the Sect. 2 are merely one-dimensional projections of the following, infinite-
dimensional, ‘meta’ stochastic limit-law:

Proposition 4 The stochastic limit P = limP(ε;n) exists if and only if Conditions 1 and 2
are met—in which case the limiting population P is a Paretian Poisson process with expo-
nent α and amplitude c.

Proposition 4, whose proof is given in the Appendix 9.1, is a special case of general
statistical limit theorems referred to in Probability Theory as “the convergence of empirical
measures to limiting Poisson random measures” ([17], Theorems 10 and 11; [18]).

We emphasize that not all functionals of the random population P(ε;n) converge sto-
chastically to the corresponding functionals of the limiting population P . An example of
an important population functional—the Lorenz curve [19]—displaying a discontinuous be-
havior at the limit P = limP(ε;n) is given in the Appendix 9.2.

4.1 Universality

The stochastic limit-law of Proposition 4, as well as its one-dimensional projections—the
four stochastic limit-laws of Sect. 2, turn out to be independent of the details of the under-
lying survival probability function P>(·). In the stochastic limit (ε → 0 and n → ∞) the
entire functional structure of the survival probability function P>(·) collapses to one single
parameter: the exponent α.

The random variables {ξ1, ξ2, . . .}, governed by the survival probability function P>(·),
represent the population at its microscopic level. The stochastic limit P , on the other hand,
represent the population at its macroscopic level. The only information communicated from
the micro-level to the macro-level—and determining the structure of the macro-level—is the
exponent α. At the micro-level the parameter α is the exponent of regular variation (of the
survival probability function P>(·)), and at the macro-level the parameter α is the Paretian
exponent.

This ‘collapse of information’ taking place in the transition from the micro-level to the
macro-level renders the aforementioned stochastic limit-laws universal.

4.2 Macroscopic Observability

The ubiquity of Pareto’s law in diverse ‘real world’ systems motivated researchers to seek
‘universal mechanisms’ capable of generating this law. Examples include Preferential At-
tachment (Yule process [20], Simon’s model [21]), Self-Organized Criticality ([22] and ref-
erences therein), and the Oligarchy Mechanism (for the universal generation of Pareto’s law
with integer-valued exponents [23]).
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Equation (5) and Proposition 4 provide a universal statistical explanation—rather than
a universal generating mechanism—for the emergence of power-laws in ‘real world’ sta-
tistical data. In the context of large data sets drawn randomly and independently from an
arbitrary positive-valued probability distribution we asked: “What statistical regularities are
macroscopically observable?”. The answer, given by Proposition 4, was: “Paretian Poisson
processes”. And, most important, the precondition for the emergence of a macroscopically
observable statistical regularity is that the survival probability of the underlying distribution
be regularly varying at infinity.

The situation is as follows. On the microscopic level, the precondition of regular vari-
ation may or may not hold. If it holds then, on the macroscopic level, a statistical regu-
larity will exist and it will be ‘Paretian’. And if it does not hold then, on the macroscopic
level, no statistical regularity will exist. Macroscopically—in the positive-valued IID set-
ting considered—we either see ‘Paretian statistical regularity’ or see no statistical regularity
whatsoever.

As for the microscopic precondition of regular variation—be it ubiquitous or rare—the
cases in which it holds are precisely the cases in which a macroscopic statistical regularity
exists. In these cases particular and specific ‘microscopic models’ (as the ones noted above
[20–23]) are required in order to explain the existence of regular variation.

In settings which are not IID however, non-Paretian macroscopic statistical regularities
may certainly appear. This is well exemplified by the empirical distributions of income in hu-
man societies—a result of countless interactions taking place in human economies—which
have log-Normal bulks and are Paretian only in their tails [24].

4.3 Phase Transition

Paretian Poisson processes undergo a phase transition at the Paretian exponent value α = 1.
The phase transition affects the statistical behavior of both the exceedance-size S(l) and
the aggregate A. Indeed, the exceedance-size S(l) is of infinite mean (〈S(l)〉 = ∞) in the
exponent range 0 < α ≤ 1, and is of finite mean (〈S(l)〉 = lα/(α − 1)) in the exponent range
α > 1. And, the aggregate A is finite (with Laplace transform given by (7)) in the exponent
range 0 < α < 1, and is infinite (with probability one) in the exponent range α ≥ 1. The
phase transition further affects the Lorenz curve [25] and the oligarchic structure [26] of
Paretian Poisson processes.

5 Order-Statistics

This Section focuses on the order-statistics of the limiting population P—a Paretian Poisson
process with exponent α and amplitude c. Since the population P is infinite, it has an infinite
sequence of order-statistics O1 > O2 > O3 > · · · , where O1 denotes population’s maximal
point, O2 denotes population’s second-maximal point, etc.

5.1 Simulation

The power-law Poissonian structure of the limiting population P induces the following sto-
chastic representation for its sequence of order-statistics [27]:1

Ok
law=

(
c

E1 + · · · + Ek

) 1
α

(13)

1Here and hereafter, the sign
law= denotes equality in law of random entities.
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(k = 1,2, . . .), where {Ek}∞
k=1 is an IID sequence of exponentially-distributed random vari-

ables with unit mean.
Equation (13) confirms with the fact that the order-statistics are dependent random vari-

ables. What is surprising and unexpected is the fact that the consecutive ratios of the order-
statistics turn out to be independent random variables—admitting the stochastic representa-
tion [27]:

Ok+1

Ok

law= (Uk)
1
αk (14)

(k = 1,2, . . .), where {Uk}∞
k=1 is an IID sequence of random variables distributed uniformly

on the unit interval.
The stochastic representations of (13) and (14) provide highly efficient and remarkably

simple algorithms for the computer simulation of the order-statistics, and of the order-
statistics ratios, of Paretian Poisson processes.

5.2 Statistical inference

In the case of vast populations its often so that the observed data consists of the top-n order-
statistics O1 > · · · > On—rather than being a standard random sample of the population.

Having observed the top-n sample {Ok}n
k=1 of a Poisson process (defined on the positive

half-line), two key questions are of interest: (i) Is the underlying Poisson process Paretian?
(ii) If the answer to the first question is affirmative, then what is the value of the Paretian
exponent α?

The top-n sample {Ok}n
k=1 however, is not an IID sample. Hence, standard statistical

methods for IID samples cannot be applied to the top-n sample {Ok}n
k=1 in order to infer the

statistics of the underlying Poisson process. Yet, under the null hypothesis that the underly-
ing Poisson process is Paretian, (14) implies that the random variables

Vk = k ln

(
Ok

Ok+1

)
(15)

(k = 1, . . . , n− 1) form an IID sequence of exponentially-distributed random variables with
mean 1/α. Thus, conducting a standard goodness-of-fit statistical test to the sample {Vk}n−1

k=1
we can conclude whether to accept or reject the null hypothesis.

Having accepted the null hypothesis, we set

	n =
n−1∑

k=1

ln

(
Ok

On

)
, (16)

and estimate the Paretian exponent α according to the following proposition:

Proposition 5

1. The statistic n/	n is a Maximal Likelihood Estimator of the Paretian exponent α, and
its probability density function is unimodal with mode α and peak ∼ √

n/(α
√

2π) (as
n → ∞).

2. The statistic (n − 2)/	n is an Unbiased Estimator of the Paretian exponent α, and its
variance equals α2/(n − 3).
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3. The skew and the kurtosis of both statistics n/	n and (n − 2)/	n are given by:

Skew = 4

√
n − 3

(n − 4)
, Kurtosis = 3

(n − 3)(n + 4)

(n − 4)(n − 5)
. (17)

The proof of Proposition 5 is given in the Appendix 9.3. This proof also implies that the
statistic 	n/(n − 1) is an Unbiased Estimator of the parameter 1/α, and that it converges
in probability (as n → ∞) to its mean 1/α. Moreover, the Theory of Large Deviations (see,
for example, [28]) ensures that the convergence in probability takes place at an exponential
pace. (These assertions are consequences of the stochastic representation of (41), appearing
in the proof of Proposition 5.)

Proposition 7 in [25] asserts that if the rate function r(t) (t > 0) of the underlying Poisson
process is regularly varying at the origin with exponent ν = −(1+α) then the statistic n/	n

converges with probability one (as n → ∞) to the Paretian exponent α.
We note that the statistic (n−1)/	n is the Hill Estimator [29]—the Maximal Likelihood

Estimator of the Paretian exponent α, based on the top-n sample {Ok}n
k=1, in the case of finite

IID populations drawn from a Pareto distribution.

6 Fractality

This Section describes two different definitions of fractality in the context of Poisson
processes defined on the positive half-line—one based on the notion of scale invariance,
and the other based on the notion of renormalization. As shall be demonstrated, both these
definitions identify fractality with the class of Paretian Poisson processes.

For a comprehensive study of fractality in the context of Poisson processes, as well as
for the detailed proofs of the results stated in this Section, the readers are referred to [30].
Below, we consider an arbitrary Poisson process � with rate function r(t) (t > 0) which is
integrable at infinity.

6.1 Scale Invariance

Consider the subset �l = � ∩ (l,∞) consisting of the points of the process � residing
above the positive level l. As noted in Sect. 3 above, the subset �l forms an IID sequence
of random variables with generic size S�(l) (whose survival probability function is given
by (9)).

If we rescale the generic size S�(l) with respect to level l we obtain the rescaled generic
size Ŝ�(l) = S�(l)/ l—which is governed by the survival probability function

Prob
(
Ŝ�(l) > x

) =
∫ ∞

lx
r(t)dt

∫ ∞
l

r(t)dt
(x ≥ 1). (18)

The Poisson process � is defined scale-invariant if its rescaled generic sizes {Ŝ�(l)}l>0

are independent of the level parameter l [30].
Equation (18) implies that the Poisson process � is scale-invariant if and only if its rate

function is a power-law. Hence, the class of scale-invariant Poisson processes coincides
with the class of Paretian Poisson processes.
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6.2 Renormalization

Consider the p-order renormalization Rp(�) of the process � defined as follows (p being a
positive parameter): (i) replace the Poisson process � with a Poisson process �p governed
by the rate function rp(t) = pr(t); (ii) rescale the points of the Poisson process �p by the
factor σ(p). The resulting p-order renormalization is given by the set

Rp (�) =
{

1

σ(p)
· π

}

π∈�p

. (19)

The renormalization is required to be consistent: A p-order renormalization followed by
a q-order renormalization should equal, in law, a pq-order renormalization. This consis-
tency requirement implies that the renormalization function σ(·) need be a power-law [30]:
σ(p) = pβ where β is an arbitrary positive exponent.

The ‘displacement theorem’ of the Theory of Poisson processes ([5], Sect. 5.5) further
implies that the p-order renormalization Rp(�) is a Poisson process with rate function

(
Rp(r)

)
(t) = p1+βr

(
pβt

)
(t > 0). (20)

The Poisson process � is defined a renormalization fixed-point if the renormalizations

{Rp}p>0 leave it statistically unchanged [30]: Rp(�)
law= � for all p > 0.

Equation (20) implies that the Poisson process � is a renormalization fixed-point if and
only if its rate function is a power-law. Hence, the class of renormalization fixed-point Pois-
son processes coincides with the class of Paretian Poisson processes.

The motivation for having constructed and defined the Poissonian renormalizations
{Rp}p>0 as presented above is explained in the Appendix 9.4.

7 Perturbations

In this last Section we explore the statistical deformation of Paretian Poisson processes under
the action of arbitrary random multiplicative perturbations.

Consider a random shock applied to a population represented by an arbitrary count-
able collection of positive-valued points  = {ωk}k . The shock perturbs each point of the
population—independently of all other points—by the random positive factor ζ . Hence, the
population is perturbed from its ‘pre-shock’ position  = {ωk}k to the ‘post-shock’ position
ϒζ () = {ζkωk}k , where {ζk}k are IID copies of the random variable ζ . We coin the set
ϒζ () the ζ -perturbation of the set .

Consider now an arbitrary Poisson process � with rate function r(t) (t > 0) which is
integrable at infinity. The ‘displacement theorem’ of the Theory of Poisson processes ([5],
Sect. 5.5) implies that the ζ -perturbation ϒζ (�) of the process � is a Poisson process with
rate function

(
ϒζ (r)

)
(t) =

∫ ∞

0
r
(

t

s

)
1

s
Fζ (ds) (t > 0), (21)

where Fζ (·) is the cumulative distribution function of the random variable ζ .
If the Poisson process under consideration is Paretian then (21) yields

(
ϒζ (r)

)
(t) = 〈ζ α〉 r(t) (t > 0), (22)
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where α is the Paretian exponent. Namely, ζ -perturbations map the class of Paretian Pois-
son process onto itself as follows: (i) the Paretian exponent α is left unchanged; and, (ii)
the Paretian amplitude is multiplied by the factor 〈ζ α〉. Up to their amplitudes, Paretian
Poisson processes are left invariant under the action of random multiplicative perturba-
tions.

In fact, (22) is unique to Paretian Poisson processes and characterizes them: A Poisson
process is Paretian with exponent α if and only if (22) holds for all ζ -perturbations. (The
‘only if’ part of this assertion follows by considering deterministic ζ -perturbations.)

More generally, we define the Poisson process � resilient to the action of random multi-
plicative perturbations if

(
ϒζ (r)

)
(t) = �(ζ)r(t) (t > 0) (23)

holds for all ζ -perturbations, where �(ζ) is a some positive-valued functional of the random
perturbation factor ζ . Namely, a Poisson process � is resilient if—up to a multiplicative
factor—its rate function r(t) (t > 0) is left invariant under the action of random multiplica-
tive perturbations.

The following Proposition, whose proof is given in the Appendix 9.5, asserts that the
class of resilient Poisson processes coincides with the class of Paretian Poisson processes:

Proposition 6 A Poisson process � is resilient if and only if it is Paretian.

8 Conclusions

This article explored the class of Paretian Poisson processes—Poisson processes defined on
the positive half-line and governed by decreasing power-law rate functions. As was demon-
strated, the class of Paretian Poisson processes is central in statistical physics: It connects
together elemental issues—which, at first glance, seem unrelated—via a deep and funda-
mental underlying statistical structure.

The Poisson distribution of the Law of Small Numbers, Paretian tail statistics, the Fréchet
distribution of Extreme Value Theory, the one-sided Lévy distribution of the Central Limit
Theorem—are all one-dimensional projections of an underlying infinite-dimensional ‘meta’
stochastic limit-law which asserts that Paretian Poisson processes are the only possible sto-
chastic scaling limits of random populations of IID positive-valued random variables.

Moreover, within the totality of all Poisson processes defined on the positive half-line,
Paretian Poisson processes constitutes the class of processes which are: (i) invariant under
changes of scale; (ii) invariant under renormalizations; (iii) resilient to the action of random
multiplicative perturbations. The first two features render Paretian Poisson processes fractal,
while the third renders their statistical structure highly stable.

We hope that this article will encourage Scientists—when encountering and investigating
random populations—to bear the ‘picture’ of Paretian Poisson processes in mind. Being
aware of the entire ‘Pareto-Poisson iceberg’, rather than merely of its ‘Paretian tip-of-the-
iceberg’, may very well lead to deeper an understanding and insight of the populations under
investigation.
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Appendix

9.1 Proof of Proposition 4

A general point process  defined on the positive half-line is an arbitrary countable col-
lection of points scattered randomly on the positive half-line. The generating function of a
general point process  is given by

G(φ) =
〈
∏

ω∈

φ(ω)

〉

, (24)

where the variable φ(·) is a smooth test function which takes values in the unit interval and
satisfies φ(0) = 1.

Throughout the proof the shorthand lim denotes the double limit ε → 0 and n → ∞.
The generating function of the random population P(ε;n) of (1) is given by

GP(ε;n)(φ) =
〈

n∏

k=1

φ(εξk)

〉

= 〈φ(εξ1)〉n . (25)

Noting that

〈φ(εξ1)〉 = φ(0) +
∫ ∞

0
φ′(x)Prob (εξ1 > x)dx

= 1 +
∫ ∞

0
φ′(x)P>(x/ε)dx, (26)

we obtain that

GP(ε;n)(φ) =
(

1 +
∫ ∞

0
φ′(x)P>(x/ε)dx

)n

. (27)

A non-trivial limit G(φ) = limGP(ε;n)(φ) exists if and only if a non-trivial limit

I (φ) = limn

∫ ∞

0
φ′(x)P>(x/ε)dx (28)

exists—in which case G(φ) = exp{I (φ)}.
Noting that

n

∫ ∞

0
φ′(x)P>(x/ε)dx = (nP>(1/ε))

∫ ∞

0
φ′(x)

(
P>(x/ε)

P>(1/ε)

)
dx (29)

it is straightforward to observe that a non-trivial limit I (φ) exists if and only if Conditions
1 and 2 are met—in which case

I (φ) = c

∫ ∞

0
φ′(x)x−αdx = c

∫ ∞

0
φ′(x)

(∫ ∞

x

αt−(1+α)dt

)
dx

=
∫ ∞

0

(∫ t

0
φ′(x)dx

)(
cαt−(1+α)

)
dt =

∫ ∞

0
(φ(t) − 1)

(
cαt−(1+α)

)
dt. (30)
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Thus, we conclude that: A non-trivial limit G(φ) = limGP(ε;n)(φ) exists if and only if
Conditions 1 and 2 are met—in which case

G(φ) = exp

{∫ ∞

0
(φ(t) − 1) r(t)dt

}
(31)

where r(t) = cαt−(1+α) (t > 0).
The Right-Hand-Side of (31), however, is the generating function of a Poisson process P

defined on the positive half-line and governed by the rate function r(t) (t > 0) [5]. Hence,
we arrive at the conclusion of Proposition 4:

The stochastic limit P = limP(ε;n) exists if and only if Conditions 1 and 2 are met—in
which case the stochastic limit P is a Paretian Poisson process governed by the power-law
rate function r(t) = cαt−(1+α) (t > 0).

9.2 Lorenz Curves

The Lorenz curve is a statistical method of representing distribution functions of different
types and ranges on a single universally-calibrated scale. It was devised in 1905 by the
American statistician Max Lorenz [19] in order to quantitatively measure, in a universally-
calibrated way, the distribution of wealth within human populations—no matter what the
population considered is, no matter in what currency wealth is measured, and no matter the
range of the population’s wealth values.

The Lorenz curve y = L(x) of a given population  reads out as follows: The top
100x% of the population are in possession of 100y% of the total population’s wealth. The
Lorenz curve is defined on the unit interval (0 ≤ x ≤ 1), ranges over the unit interval (0 ≤
y ≤ 1), and is monotone non-decreasing from the point L(0) = 0 to the point L(1) = 1.

Let us now turn to examine the Lorenz curve of the random population P(ε;n) in
the double limit ε → 0 and n → ∞, and the Lorenz curve of the limiting population
P = limP(ε;n).

9.2.1 The Population P(ε;n)

A probabilistic limit theorem of the Glivenko-Cantelli type asserts that [31, 32]: If the IID
random variables {ξ1, ξ2, . . .} possess a finite mean 〈ξ1〉 = μ < ∞ then the limiting Lorenz
curve L(x) = limLP(ε;n)(x) of the random population P(ε;n) exists and is given by

L(x) = 1

μ

∫ x

0
P−1

> (u)du (32)

(0 ≤ x ≤ 1), where P−1
> (·) is the inverse of the survival probability function P>(·).

Note that the Lorenzian stochastic limit-law for the random population P(ε;n) is not
universal. Indeed, the limiting Lorenz curve L(x) = limLP(ε;n)(x) turns out to be contingent
on the specific details of the survival probability function P>(·)—in sharp contrast to the
stochastic limit-laws of Sect. 2.

9.2.2 The Population P

A recent ‘Lorenzian analysis’ of Paretian Poissonian processes asserts that [25]: If the
Paretian exponent α is in the range α > 1 then the Lorenz curve of the limiting popula-
tion P is given by

LP(x) = x1− 1
α (33)



500 I. Eliazar, J. Klafter

(0 ≤ x ≤ 1). (The requirement that the exponent α be in the range α > 1, in the case of the
limiting population P , is the ‘Poissonian analogue’ of the finite mean requirement μ < ∞
in the case of the random population P(ε;n).)

9.2.3 Discontinuity

The Lorenz curve displays a discontinuous behavior at the double limit ε → 0 and n → ∞.
Indeed, the limiting Lorenz curve L(x) = limLP(ε;n)(x), in general, does not coincide with
the Lorenz curve LP(x) of the limiting population P = limP(ε;n). Namely:

limLP(ε;n)(x) �= LlimP(ε;n)(x). (34)

This discontinuous behavior is markedly different than the continuous behavior displayed
by the population-functionals considered in Sects. 2 and 3—exceedances, maxima, and ag-
gregates.

It is interesting to note that equality holds in (34) if and only if the survival probability
function P>(·) is Paretian: P>(x) = (x/b)−α (x ≥ b), where b is an arbitrary positive lower
bound. This assertion is intimately related to the notion of ‘Lorenzian fractality’ introduced
in [25].

(The ‘if’ part of this assertion follows from the substitution of the Paretian survival prob-
ability P>(x) = (x/b)−α into (32); the ‘only if’ part of the assertion follows from equating
equations (32) and (33), and thereafter extracting the survival probability function P>(·).)

9.3 Proof of Proposition 5

We split the proof of Proposition 5 into three parts.

9.3.1 Maximal Likelihood Estimator

The multidimensional probability density function of the top-n order-statistics {Ok}n
k=1 of a

Poisson process with rate function r(t) (t > 0) is given by [27]:

fn (t1, . . . , tn) = r(t1) · · · r(tn) exp

{
−

∫ ∞

tn

r(t)dt

}
(35)

(t1 > · · · > tn > 0).
Hence, the log-likelihood of the top-n order-statistics of a Paretian Poisson process—

governed by the power-law rate function r(t) = cαt−(1+α) (t > 0)—is given by:

Ln (t1, . . . , tn; c,α) = n ln (c) + n ln (α) − (α + 1) ln (t1 · · · tn) − c (tn)
−α (36)

(t1 > · · · > tn > 0; c,α > 0).
In turn, the partial derivatives of the log-likelihood function Ln, with respect to the para-

meters c and α, are given by

∂Ln

∂c
(t1, . . . , tn; c,α) = n

1

c
− (tn)

−α (37)

and

∂Ln

∂α
(t1, . . . , tn; c,α) = n

1

α
− ln (t1 · · · tn) + c (tn)

−α ln(tn). (38)



Paretian Poisson Processes 501

The log-likelihood function Ln has a unique critical point (c∗, α∗). Indeed, equating equa-
tion (37) to zero implies that n = c∗(tn)−α∗ ; substituting this into (38), while equating it to
zero, further implies that

1

α∗
= 1

n
ln (t1 · · · tn) − ln (tn) = 1

n

n−1∑

k=1

ln

(
tk

tn

)
. (39)

The critical point (c∗, α∗) is a global maximum of the log-likelihood function Ln. Hence,
(39) implies that the statistic n/	n is a Maximal Likelihood Estimator of the Paretian expo-
nent α.

9.3.2 The Distribution of the Statistic 	n

The stochastic representation of (14) implies that

ln

(
Ok

On

)
= ln

(
Ok

Ok+1
· · · On−1

On

)

law= − ln
(
(Uk)

1
αk · · · (Un)

1
α(n−1)

)
= −1

α

n−1∑

j=k

1

j
ln(Uj ) (40)

(k = 1, . . . , n − 1). Setting Zj = − ln(Uj ) (j = 1, . . . , n − 1) we further obtain that

	n =
n−1∑

k=1

ln

(
Ok

On

)

law=
n−1∑

k=1

1

α

n−1∑

j=k

1

j
Zj =

n−1∑

j=1

1

j
Zj

j∑

k=1

1

α
, (41)

n−1∑

j=1

1

j
Zj

j

α
= 1

α
(Z1 + · · · + Zn−1).

Since the random variables {U1, . . . ,Un−1} are IID and uniformly distributed on the unit
interval, the random variables {Z1, . . . ,Zn−1} are IID and exponentially distributed with unit
mean.

The stochastic representation of (41) implies that the statistic 	n is Gamma distributed
with parameters α and n− 1. Namely, the statistic 	n is governed by the probability density
function

f (t) = αn−1

(n − 2)! exp {−αt} tn−2 (t > 0). (42)

9.3.3 Statistical Properties of the Estimators

Let η be an arbitrary positive parameter and consider the random variable η/	n. Equation
(42) implies that the random variable η/	n is governed by the probability density function

f (t) = (αη)n−1

(n − 2)! exp {−αη/t} t−n (t > 0). (43)

The probability density function of (43):
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1. is unimodal, and its mode and peak are given, respectively, by

t∗ = αη

n
and f (t∗) = 1

αη

nn exp {−n}
(n − 2)! ; (44)

2. has mean
αη

n − 2
; (45)

3. has variance
(

αη

n − 2

)2 1

n − 3
; (46)

4. has skew

4

√
n − 3

n − 4
; (47)

5. has kurtosis

3
(n − 3)(n + 4)

(n − 4)(n − 5)
. (48)

Setting η = n, and using Stirling’s formula, (44) implies that the statistic n/	n has mode
α and peak ∼ √

n/(α
√

2π) (as n → ∞). Setting η = n−2, (45)–(46) imply that the statistic
(n − 2)/	n has mean α and variance α2/(n − 3). Last, (47)–(48) give the skew and the
kurtosis of both the statistics n/	n and (n − 2)/	n.

9.4 Poissonian Renormalization: Motivation

Consider the renormalization parameter p to be an integer, and set the Poisson processes
�(1), . . . ,�(p) to be IID copies of the Poisson process �.

Since p is an integer, the Poisson process �p—governed by the rate function rp(t) =
pr(t)—is the union (superposition) of p independent copies of the Poisson process � [5].
Namely: �p = �(1) ∪ · · · ∪ �(p). Hence, the p-order renormalization Rp(�) is given by

Rp (�) =
{

1

pβ
· π

}

π∈�(1)∪···∪�(p)

. (49)

In particular, the maximum MRp(�) of the p-order renormalization Rp(�) is given by

MRp(�) = max{M�(1) , . . . ,M�(p)}
pβ

(50)

(the random variables M�(1) , . . . ,M�(p) being, respectively, the maxima of the Poisson
processes �(1), . . . ,�(p)). And, the aggregate ARp(�) of the p-order renormalization
Rp(�) is given by

ARp(�) = A�(1) + · · · + A�(p)

pβ
(51)

(the random variables A�(1) , . . . ,A�(p) being, respectively, the aggregates of the Poisson
processes �(1), . . . ,�(p)).
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Extreme Value Theory seeks the fixed points of (50) [9]–[11]: A positive-valued random
variable M that satisfies

M
law= max{M1, . . . ,Mp}

pβ
, (52)

where {Mk}∞
k=1 are IID copies of M . The fixed points of (52) turn out to be Fréchet distrib-

uted ((6) with exponent α = 1/β).
The Central Limit Theorem seeks the fixed points of (51) [12]–[14]: A positive-valued

random variable A that satisfies

A
law= A1 + · · · + Ap

pβ
, (53)

where {Ak}∞
k=1 are IID copies of A. The fixed points of (53) turn out to be one-sided Lévy

distributed ((7) with exponent α = 1/β).
Transcending from the maximum and the aggregate projections back up to the ‘process

level’, we seek the fixed points of (49): A Poisson process �, defined on the positive half-
line, that satisfies

Rp (�)
law= �. (54)

The Poissonian renormalization Rp(�) is thus the infinite-dimensional ‘meta’ renormal-
ization underlying the one-dimensional renormalizations of both Extreme Value Theory (52)
and the Central Limit Theorem (53) (in the case of positive-valued IID random variables).
Moreover, the Poissonian renormalization Rp(�) is naturally extended from integer-valued
parametrization (p = 1,2, . . .) to positive-valued parametrization (p > 0)—as presented in
Sect. 6.2.

9.5 Proof of Proposition 6

If the Poisson process � is Paretian then (22) implies that it is resilient. We assume that �

is a Poisson process with rate function r(t) (t > 0) which is integrable at infinity, and which
satisfies (23), and prove that it is Paretian.

Let p and q be arbitrary positive parameters. Clearly

ϒpq (�) = ϒp

(
ϒq (�)

)
(55)

(this identity holds for all Poisson processes). Equation (55), combined together with (23),
implies that

�(pq)r(t) = (
ϒpq(r)

)
(t) = (

ϒp

(
ϒq(r)

))
(t) = �(p)�(q)r(t) (56)

(t > 0). Hence �(pq) = �(p)�(q) which, in turn, implies that �(p) = pγ where γ is an
arbitrary real-valued exponent.

Now, (21) implies that

(
ϒ1/p(r)

)
(t) = pr (pt) (t > 0). (57)

On the other hand, (23) implies that

(
ϒ1/p(r)

)
(t) = p−γ r(t) (t > 0). (58)
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Consequently, (57) and (58) yield

r (pt) = p−(1+γ )r(t) (t > 0). (59)

Finally, setting t = 1 in (59) and using the fact that the parameter p is arbitrary, we
conclude that: (i)

r (p) = r(1)p−(1+γ ) (p > 0); (60)

and, (ii) the exponent γ is positive (for otherwise the rate function will fail to be integrable
at infinity). Hence, we obtained that the Poisson process � is Paretian.
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